

MIT International Center for Air Transportation

Before and After the Bubble:

An Analysis of Dynamics of the US Commercial Air Transportation System

Ryan Tam

Massachusetts Institute of Technology

JUP Meeting April 2003

Overview

- System Performance
- Operational Changes Since 9/11
- Industry Sustainability
- Implications

The Air Transportation System in the United States

Conceptual Model

Relationships

Allocates travel demand

affects which airlines survive (how much demand can be absorbed/served)

Generates travel demand

Air Transportation System

- Two primary dynamics
 - —Transportation product
 - -Financial environment
- Traffic and financial indicators evaluate the "health" of the system

Forces & Trends before 9/11

Major Forces

Travel Demand

Market Expectations

Competition

Capacity Limitations

Fuel

Labor

Regulatory

Environmental

Information Technology

Media

Equity Markets

Major Trends

Consolidation (mergers, alliances,

codesharing, suppliers)

Alliances

Rising Demand

Fleet Changes

Revenue Management & Increased

Load Factors

Decreasing Robustness

Delays

Cancellations

Passenger Frustration

The Bubble

Industry Profitability

Cyclic pattern

Source: ATA data

Performance Since 9/11

Performance Metrics

Profitability Traffic and Load Factors

Traffic (RPMs)

Capacity (ASMs)

Average Load Factor

Airline Profitability

00-1Q 00-2Q 00-3Q 00-4Q 01-1Q 01-2Q 01-3Q 01-4Q 02-1Q 02-2Q 02-3Q 02-4Q

Only Southwest has maintained profitability after 9/11.

Source: Airline financial reports

Revenues vs. Costs

Source: DOT Form 41 Data and airline financial reports

- Traffic has decreased
- Revenues have decreased more

Operational Changes

Actions

Capacity reductions
Service reductions
Network/fleet changes
Hub restructuring
Labor
Fuel
Taxes

Hub and Spoke Networks

Source: OAG, July 2000

Capacity Reductions

Source: AA Electronic Timetables

Capacity decrease at American after 9/11 was achieved by elimination of the last bank; hubs survived.

Service Reductions

Most communities retained service after 9/11 with reduced frequencies or smaller aircraft. Most discontinued cities had alternate service nearby.

Continental

- Near DFW (<150 miles):Abilene, Tyler, and Waco
- —Near MCO (<50 miles): Daytona Beach, Melbourne
- —Near PHL: Atlantic City

United

- —Bellingham, WA
- —Little Rock, AR
- -Victoria, BC
- Mobile, AL
- —Lynchburg, VA
- —Newport News, VA
- —Staunton, VA.

Hub Restructuring

American is converting to a rolling bank system at DFW; more efficient, but may decrease connectivity.

Fleet Changes

Regional jets deployed throughout airline networks

Source: OAG and ETMS data, 1998-2002.

Aviation Taxes & Surcharges

Source: ATA

Domestic Fuel Prices: 1995-2003

Source: ATA data; All US Majors, Nationals, Large Regionals - All Services

Other Sensitivities

- Labor Costs
- Security Costs

Financial Sustainability

Industry/Airline Recovery

Stock Prices

Airline Stock Prices: 1980-2002

Recent Market Cap

Recent Market Cap

Historical Market Cap

Market Cap: US Majors

3/18/03

Total Market: \$14.0 billion

Source: Yahoo! Finance. Includes ATA

Market Cap

Change in Market Cap vs. RPM Share: US Majors

Relative Market Cap, 9/02 to 3/03

Source: Yahoo! Finance and airline traffic reports

Relative Market Cap, 9/02 to 3/03

Source: Yahoo! Finance and airline traffic reports

Decline in Market Cap

Losses since May 2002:

Nat'l/Regionals \$3.2 bil. (-43%)

US Majors \$11.9 bil. (-48%)

\$17.6 billion since Aug 2001 (55.7% drop)

Source: Yahoo! Finance

Implications

Implications

- Airline traffic and revenues reflect fundamental changes in travel market
- Operational changes and industry restructuring represent attempt to maintain profitability
- Bottom line: airlines still losing money

- Financial markets do not believe in the long-term profitability of US Major Airlines
- Could affect ability to find capital for aircraft purchases, aviation infrastructure, etc..
- Lead to massive industry failure?

Unclear Future

- Are airlines sustainable over the longterm?
 - —Railroads, highways, transit?
 - —Does air continues to add value to economic processes and flows?
 - —Can the speed of air travel ever be replaced?
- Ramifications for air transportation system: connectivity, level-of-service

Conceptual Model

MIT International Center for Air Transportation

http://web.mit.edu/aeroastro/www/labs/ICAT/

http://web.mit.edu/airlines/

Professor R. John Hansman

Dept. of Aeronautics & Astronautics

77 Massachusetts Ave #33-303

Cambridge, MA 02139

Phone: (617) 253-2271 E-mail: rjhans@mit.edu

Ryan Tam, MST/PhD Candidate

Center for Transportation & Logistics

77 Massachusetts Ave #35-220

Cambridge, MA 02139

Phone: (617) 253-0993

E-mail: rtam@mit.edu

US Airline Net Profit

1947-2001 (Annual)

US Airlines Net Profit Model

Best Fit of Undamped Oscillation

Cycle Period = 11.3 yr eFolding Time = 6.3 yr

